Outreach and Education Division

    The EDUCATION AND OUTREACH DIVISION supports chemistry education at all levels, including K-12, college, and adult/continuing education. It maintains liaisons to the Chicago Public Schools and the American Association of Chemistry Teachers (AACT). The Division engages the general public in chemistry-related educational activities, participates in ACS activities at the annual Illinois State Fair, and publicizes all events and news-related content. The division oversees the annual Project SEED program for the Section as well as the Project SEED scholarships. The Division also assists public officials and other community bodies concerning chemistry-related matters. The Education and Outreach Division includes the Education, Outreach, Project SEED, and Public Affairs Committees.

    The EDUCATION COMMITTEE provides chemistry-related educational programs and information to learners of all ages and actively engages with educators at the pre-K-12 and college levels. Subcommittees include:

    • AACT Liaison
    • College Education Subcommittee
    • Continuing Education Subcommittee
    • Chicago School Board Liaison
    • K - 12 Education Subcommittee


    The PUBLIC AFFAIRS COMMITTEE ensures that section members and public officials and bodies are informed of matters where the knowledge and practice of chemistry is of substantial public importance. These matters can include government issues, environmental issues and the social responsibility of chemists. The Public Affairs Committee gives the Public Affairs Award biennially.

    The OUTREACH COMMITTEE engages the general public, educators and children in chemistry-related educational activities and participates in many different types of events around the greater Chicago area.   Subcommittees include:

    • Community Activities Subcommittee
    • Illinois State Fair Subcommittee


    PROJECT SEED COMMITTEE identifies interested low-income and/or minority high school junior and senior students who are interested in participating in a paid summer research experience with  a college or university faculty member.  It supports financial and logistical concerns for the student/ faculty relationships and communicating  relevant program information to the national ACS organization.  The committee is also responsible for distributing Project SEED awards to support the internships. 

    Compounds vs. Mixtures

    Kids, sometimes it can be hard to figure out what someone means by a pure compound versus a mixture. Let's try to clear this up with an easy explanation and experiment. First, pure elements are what you see on the periodic table, and some materials exist naturally in their pure elemental form, like lead (Pb), neon (Ne), iron (Fe), etc. Some other elements are "diatomic", like nitrogen (N2 ), oxygen (O2 ), and hydrogen (H2 ) in their natural state. Then we have to deal with the compounds. These are pure materials made up of two or more elements on the periodic table and represented by a distinct molecule, like water (H2O) and ammonia (NH3 ) and sodium chloride (NaCl) salt.

    Please note:  All chemicals and experiments can entail an element of risk, and no experiments should be performed without proper adult supervision.

    Finally there are the mixtures. These are combinations of compounds and account for most of what you encounter during the day. Take salt water, for example. Mix some regular table salt in water and you have a mixture. It is not a new compound because you can't write a formula for salt water, rather it is a combination (a "homogeneous" one). Mix together salt with some white table sugar and you also have a mixture (a "heterogeneous" one). White sugar is a pure compound called sucrose. Other examples of mixtures are: milk (water, milk fat, proteins, lactose, etc.), blood (white blood cells, red blood cells - with hemoglobin molecules, water, platelets, electrolytes - salts, etc.), and dirt (silica or silicon dioxide or sand, decayed plants, moisture or water, etc.). It is much easier to make a mixture than it is to make a pure compound! Try to find some more examples of mixtures and compounds during a regular day. 


    Kathleen Carrado Gregar, PhD, Argonne National Labs 
    [email protected]
    September 1998