Outreach and Education Division

    The EDUCATION AND OUTREACH DIVISION supports chemistry education at all levels, including K-12, college, and adult/continuing education. It maintains liaisons to the Chicago Public Schools and the American Association of Chemistry Teachers (AACT). The Division engages the general public in chemistry-related educational activities, participates in ACS activities at the annual Illinois State Fair, and publicizes all events and news-related content. The division oversees the annual Project SEED program for the Section as well as the Project SEED scholarships. The Division also assists public officials and other community bodies concerning chemistry-related matters. The Education and Outreach Division includes the Education, Outreach, Project SEED, and Public Affairs Committees.

    The EDUCATION COMMITTEE provides chemistry-related educational programs and information to learners of all ages and actively engages with educators at the pre-K-12 and college levels. Subcommittees include:

    • AACT Liaison
    • College Education Subcommittee
    • Continuing Education Subcommittee
    • Chicago School Board Liaison
    • K - 12 Education Subcommittee


    The PUBLIC AFFAIRS COMMITTEE ensures that section members and public officials and bodies are informed of matters where the knowledge and practice of chemistry is of substantial public importance. These matters can include government issues, environmental issues and the social responsibility of chemists. The Public Affairs Committee gives the Public Affairs Award biennially.

    The OUTREACH COMMITTEE engages the general public, educators and children in chemistry-related educational activities and participates in many different types of events around the greater Chicago area.   Subcommittees include:

    • Community Activities Subcommittee
    • Illinois State Fair Subcommittee


    PROJECT SEED COMMITTEE identifies interested low-income and/or minority high school junior and senior students who are interested in participating in a paid summer research experience with  a college or university faculty member.  It supports financial and logistical concerns for the student/ faculty relationships and communicating  relevant program information to the national ACS organization.  The committee is also responsible for distributing Project SEED awards to support the internships. 

    The Power of Tiny Bubbles

    Kids, can you make popcorn kernels dance?  This particular dance will be up and down rather than side to side.  You will need two clear glasses or containers, water, clear soda water, and several uncooked popcorn kernels.  Fill one glass with water and the other with soda water, then drop a few popcorn kernels in each.  Notice whether they sink or float right away.  Then wait a few minutes to see where they are and what they are doing.  Tap the side of the containers and notice what happens.

    Please note:  All chemicals and experiments can entail an element of risk, and no experiments should be performed without proper adult supervision.

    The popcorn should sink to the bottom of the water glass and stay there pretty much forever.  As for the soda glass, however, what do you think makes the kernels float after awhile, and what makes them sink again?  This cycle is possible using the power of tiny bubbles.  Bubbles of carbon dioxide, that is.   When enough bubbles stick to the kernels, buoyancy lifts them to the surface.  There, the bubbles burst and the kernels sink again.  Tapping also makes the bubbles come loose.  Your sink-float-sink cycle should last about 1/2-hour before the soda gets too flat.  Do you know another way to make a solution with carbon dioxide bubbles?  Start with water, add some vinegar, then sprinkle in some baking soda, and voila!  The acetic acid (CH3COOH) reacts with the sodium bicarbonate (NaHCO3) to make carbon dioxide gas (CO2), water (H2O), and sodium acetate (NaC2H3O2).

    Previous ChemShorts columns about this activity have appeared; see “Dancing Raisins” 2/92 and “Floaters and Sinkers” 1/93.  The latter suggests items and amounts needed for an impressive large-scale demo.


    Kathleen Carrado Gregar, PhD, Argonne National Labs 
    [email protected]
    December 2004



    52 Amazing Science Experiments” by Lynn Gordon, 1998; Chronicle Books, San Francisco, CA