Outreach and Education Division

    The EDUCATION AND OUTREACH DIVISION supports chemistry education at all levels, including K-12, college, and adult/continuing education. It maintains liaisons to the Chicago Public Schools and the American Association of Chemistry Teachers (AACT). The Division engages the general public in chemistry-related educational activities, participates in ACS activities at the annual Illinois State Fair, and publicizes all events and news-related content. The division oversees the annual Project SEED program for the Section as well as the Project SEED scholarships. The Division also assists public officials and other community bodies concerning chemistry-related matters. The Education and Outreach Division includes the Education, Outreach, Project SEED, and Public Affairs Committees.

    The EDUCATION COMMITTEE provides chemistry-related educational programs and information to learners of all ages and actively engages with educators at the pre-K-12 and college levels. Subcommittees include:

    • AACT Liaison
    • College Education Subcommittee
    • Continuing Education Subcommittee
    • Chicago School Board Liaison
    • K - 12 Education Subcommittee


    The PUBLIC AFFAIRS COMMITTEE ensures that section members and public officials and bodies are informed of matters where the knowledge and practice of chemistry is of substantial public importance. These matters can include government issues, environmental issues and the social responsibility of chemists. The Public Affairs Committee gives the Public Affairs Award biennially.

    The OUTREACH COMMITTEE engages the general public, educators and children in chemistry-related educational activities and participates in many different types of events around the greater Chicago area.   Subcommittees include:

    • Community Activities Subcommittee
    • Illinois State Fair Subcommittee


    PROJECT SEED COMMITTEE identifies interested low-income and/or minority high school junior and senior students who are interested in participating in a paid summer research experience with  a college or university faculty member.  It supports financial and logistical concerns for the student/ faculty relationships and communicating  relevant program information to the national ACS organization.  The committee is also responsible for distributing Project SEED awards to support the internships. 

    Kevlar: The Millennium Molecule

    Kids, last month we learned about teflon and this month we'll learn about another amazing polymer (which is actually a really, really big molecule) called Kevlar. Kevlar is also called the "fabric of steel" because of its outstanding strength. Underwater, it is 20 times stronger than steel! Since its introduction in 1971 it has been used in bulletproof vests and helmets, aircraft, sports equipment, gloves, boats, flight jackets, brake linings, windsurfing sails, cables, even as part of the Orbiter 3 balloon that circled the globe last March.

    Last month we learned about polymers in general. Here you'll learn that the secret to the strength of Kevlar lies in something called hydrogen bonding. The long chains of kevlar polymer molecules are stacked like uncooked spaghetti in a box. But the attraction between hydrogen and oxygen atoms on chains next to each other (this is hydrogen bonding) is very strong, and it holds the chains solidly together. Imagine if you moistened the box of spaghetti just enough to make the strands stick together like glue. It is also a bit like the attractive force in static electricity where (a) electrons are relatively easy to remove from atoms and (b) some materials (or atoms) attract electrons better than others. 

    Please note:  All chemicals and experiments can entail an element of risk, and no experiments should be performed without proper adult supervision.

    Here is an activity to mimic this bonding: tear off a strip of scotch tape (which is a plastic or polymer, by the way) about the length of your finger and fold a little bit of one end down so that it sticks to itself. Press it down on a desk top. Tear off another piece of tape, fold a tab as before, and press it down on top of the first piece with the little folded parts together. Rub the top piece several times so that they are well stuck together. Now peel them off together, grab the folded parts and quickly rip them apart. Bring the two pieces slowly near each other, without touching. What happens? The pieces of tape should be attracted to each other because electrons moved toward one side of each tape, leaving the other sides deficient, and the opposite charges attracted.

    Dr. Stephanie Kwolek was the chemist at DuPont who discovered the precise chemical concoction needed to prepare Kevlar into useful fibers for making things. At the time, DuPont was looking for a material to replace steel in radial tires (why do you think they would want to do this?). Dr. Kwolek's most satisfying reward for her work has been recognition by the Kevlar Survivors Club. These 2,300 members are police officers whose lives have been saved by wearing Kevlar armored vests. For lots more info about Kevlar please look at the references below.


    Kathleen Carrado Gregar, PhD, Argonne National Labs 
    [email protected]
    January 2000


    References: "ChemMatters" 10/99, p. 7 by Peter Banks; American Chemical Society, Washington, DC;; or, look up "aramids" on